SSE Riga - Maths Foundation

Nicolas Gavoille

February 19, 2022

Session 3 : Introduction to integration

Outline

- Indefinite integrals
- Area under a curve

Part I :
 Indefinite integrals

Previous week : differentiation

The total cost function

- ex : $C(q)=10 q^{2}+10$

Previous week : differentiation

The total cost function

- ex: $C(q)=10 q^{2}+10$
- Derivative : $C^{\prime}(q)=20 q$

Previous week : differentiation

The total cost function

- ex : $C(q)=10 q^{2}+10$
- Derivative : $C^{\prime}(q)=20 q$
- This is the marginal cost

Previous week : differentiation

The total cost function

- ex : $C(q)=10 q^{2}+10$
- Derivative : $C^{\prime}(q)=20 q$
- This is the marginal cost "What is the increase of my total cost if I increase my production by one unit?"
- Suppose we do not know the function $F(x)$, but we do know that $F^{\prime}(x)=x^{2}$
- What can be F ?
- Suppose we do not know the function $F(x)$, but we do know that $F^{\prime}(x)=x^{2}$
- What can be F ?

$$
F(x)=\frac{1}{3} x^{3}+C
$$

- Suppose we do not know the function $F(x)$, but we do know that $F^{\prime}(x)=x^{2}$
- What can be F ?

$$
F(x)=\frac{1}{3} x^{3}+C
$$

Definition of the Indefinite integral

We write the indefinite integral

$$
\int f(x) d x=F(x)+C
$$

where $F^{\prime}(x)=f(x)(C$ is an arbitrary constant)

Some rules

$$
\int x^{a} d x=\frac{1}{a+1} x^{a+1}+C(\mathrm{a} \neq-1)
$$

Some rules

$$
\int x^{a} d x=\frac{1}{a+1} x^{a+1}+C(\mathrm{a} \neq-1)
$$

$$
\int a f(x) d x=a \int f(x) d x(\mathrm{a} \text { is a constant })
$$

Some rules

$$
\begin{gathered}
\int x^{a} d x=\frac{1}{a+1} x^{a+1}+C(\mathrm{a} \neq-1) \\
\left.\int a f(x) d x=a \int f(x) d x \text { (a is a constant }\right) \\
\int[f(x)+g(x)] d x=\int f(x) d x+\int g(x) d x
\end{gathered}
$$

Application

The GDP of a country is 80 billion euros and growing at the rate $4,5 t^{-1 / 3}$ billion euros per year after t years. What is the GDP after 8 years?

Part II :
 Area under a curve - the definite integral

How to measure the area A ?

- Let t be an arbitrary number in $[a ; b]$

- $A(t)$ is the area under $y=f(x)$ over the interval $[a ; t]$
- Let t be an arbitrary number in $[a ; b]$

- $A(t)$ is the area under $y=f(x)$ over the interval $[a ; t]$
- $A(a)=0$ and $A(b)=A$
- When t increases, $A(t)$ increases
- Suppose we increase t by $\Delta t($ with $\Delta t>0)$
- Suppose we increase t by Δt (with $\Delta t>0)$
- Then $A(t+\Delta t)$ is the area under $y=f(x)$ over $[a, t+\Delta t]$
- Suppose we increase t by Δt (with $\Delta t>0$)
- Then $A(t+\Delta t)$ is the area under $y=f(x)$ over $[a, t+\Delta t]$
- Hence $A(t+\Delta t)-A(t)=\Delta A$
- This is the area under the graph of $f(x)$ on the interval $[t ; t+\Delta t]$
- Suppose we increase t by $\Delta t($ with $\Delta t>0)$
- Then $A(t+\Delta t)$ is the area under $y=f(x)$ over $[a, t+\Delta t]$
- Hence $A(t+\Delta t)-A(t)=\Delta A$
- This is the area under the graph of $f(x)$ on the interval $[t ; t+\Delta t]$

- Two observations :

- Two observations :
- ΔA cannot be larger than $f(t+\Delta t) \times \Delta t$

- Two observations :
- ΔA cannot be larger than $f(t+\Delta t) \times \Delta t$
- ΔA cannot be smaller than $f(t) \times \Delta t$

- Two observations :
- ΔA cannot be larger than $f(t+\Delta t) \times \Delta t$
- ΔA cannot be smaller than $f(t) \times \Delta t$
- As a consequence, we get :

$$
f(t) \leq \frac{A(t+\Delta t)-A(t)}{\Delta t} \leq f(t+\Delta t)
$$

$$
f(t) \leq \frac{A(t+\Delta t)-A(t)}{\Delta t} \leq f(t+\Delta t)
$$

- When Δt tends to 0 ?

$$
f(t) \leq \frac{A(t+\Delta t)-A(t)}{\Delta t} \leq f(t+\Delta t)
$$

- When Δt tends to 0 ?
- $f(t+\Delta t)$ tends to $f(t)$

$$
f(t) \leq \frac{A(t+\Delta t)-A(t)}{\Delta t} \leq f(t+\Delta t)
$$

- When Δt tends to 0 ?
- $f(t+\Delta t)$ tends to $f(t)$
- and $\lim _{\Delta t \rightarrow 0} \frac{A(t+\Delta t)-A(t)}{\Delta t}=A^{\prime}(t)$

$$
f(t) \leq \frac{A(t+\Delta t)-A(t)}{\Delta t} \leq f(t+\Delta t)
$$

- When Δt tends to 0 ?
- $f(t+\Delta t)$ tends to $f(t)$
- and $\lim _{\Delta t \rightarrow 0} \frac{A(t+\Delta t)-A(t)}{\Delta t}=A^{\prime}(t)$
- So $A^{\prime}(t)=f(t)$ for all t in $[a ; b]$

$$
f(t) \leq \frac{A(t+\Delta t)-A(t)}{\Delta t} \leq f(t+\Delta t)
$$

- When Δt tends to 0 ?
- $f(t+\Delta t)$ tends to $f(t)$
- and $\lim _{\Delta t \rightarrow 0} \frac{A(t+\Delta t)-A(t)}{\Delta t}=A^{\prime}(t)$
- So $A^{\prime}(t)=f(t)$ for all t in $[a ; b]$
- Conclusion : the derivative of the area function $A(t)$ is $f(t)$, so the area function is the integral of $f(t)$!

$$
f(t) \leq \frac{A(t+\Delta t)-A(t)}{\Delta t} \leq f(t+\Delta t)
$$

- When Δt tends to 0 ?
- $f(t+\Delta t)$ tends to $f(t)$
- and $\lim _{\Delta t \rightarrow 0} \frac{A(t+\Delta t)-A(t)}{\Delta t}=A^{\prime}(t)$
- So $A^{\prime}(t)=f(t)$ for all t in $[a ; b]$
- Conclusion : the derivative of the area function $A(t)$ is $f(t)$, so the area function is the integral of $f(t)$!
- Ok, but which integral?

$$
f(t) \leq \frac{A(t+\Delta t)-A(t)}{\Delta t} \leq f(t+\Delta t)
$$

- When Δt tends to 0 ?
- $f(t+\Delta t)$ tends to $f(t)$
- and $\lim _{\Delta t \rightarrow 0} \frac{A(t+\Delta t)-A(t)}{\Delta t}=A^{\prime}(t)$
- So $A^{\prime}(t)=f(t)$ for all t in $[a ; b]$
- Conclusion : the derivative of the area function $A(t)$ is $f(t)$, so the area function is the integral of $f(t)$!
- Ok, but which integral?
- It does not matter !

The definite integral

$$
\int_{a}^{b} f(x) d x=\left.\right|_{a} ^{b} F(x)=F(b)-F(a)
$$

where F is any indefinite integral of f over an interval containing both a and b

Example

Area under the curve $y=x^{2}$ on the interval $[0 ; 1]$?

Example

$$
\begin{gathered}
\int_{0}^{1} f(x) d x=\int_{0}^{1} x^{2} d x=\left.\right|_{0} ^{1} F(x)=\left.\right|_{0} ^{1} \frac{1}{3} x^{3} \\
=F(1)-F(0)=\frac{1}{3} \times 1-0=\frac{1}{3}
\end{gathered}
$$

Application

A company's marginal cost function is $M C(q)=\frac{75}{\sqrt{x}}$, where x is the number of units produced. Find the total cost of producing units 100 to 400 .

Application

After t hours of work, a student can solve math problems at the rate of $r(t)=-t^{2}+4 t+5$ problems per hour. How many problems will this student process during the first three hours?

Thanks for your attention, and hope to see you soon! nicolas.gavoille@sseriga.edu

