SSE Riga - Maths Foundation

Nicolas Gavoille

February 5, 2022

Math Foundation

- 3 sessions :
- February 5
- February 12
- February 19
- Starts at 10 :00
- Lecture + seminar
- Lecture slides + problem sets + solutions available online
- Certificate of attendance for students attending all three lectures

Outline

- Session 1: Introduction to differentiation
- Session 2 : Introduction to optimimization
- Session 3 : Introduction to integral calculus

Introduction to differentiation

Definition

A function f is a rule that assigns to each number x in a set a number $f(x)$. The set of all allowable values of x is called the domain, and the set of all values $f(x)$ for x in the domain is called the range

Definition

A function f is a rule that assigns to each number x in a set a number $f(x)$. The set of all allowable values of x is called the domain, and the set of all values $f(x)$ for x in the domain is called the range

In economics :

- $Q_{D}(P)$: demand function
- $U(x)$: utility function
- $\Pi(Q)$: profit function
- ...

How quickly does $f(x)$ change when x slightly increases?

How quickly does $f(x)$ change when x slightly increases? What is the rate of change?

Linear functions

- General form : $f(x)=a x+b$, with a and b constants

Linear functions

- General form : $f(x)=a x+b$, with a and b constants
- a is the slope of the graph of the function, b is the intercept

Linear functions

- General form : $f(x)=a x+b$, with a and b constants
- a is the slope of the graph of the function, b is the intercept
- Let $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ be arbitrary points on a line l. The slope of the straight line l is :

$$
a=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}
$$

Linear functions

- General form : $f(x)=a x+b$, with a and b constants
- a is the slope of the graph of the function, b is the intercept
- Let $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ be arbitrary points on a line l. The slope of the straight line l is :

$$
a=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}
$$

- The slope tells us the change of $f(x)$ when x increases by one unit \Rightarrow rate of change

Linear functions

- General form : $f(x)=a x+b$, with a and b constants
- a is the slope of the graph of the function, b is the intercept
- Let $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ be arbitrary points on a line l. The slope of the straight line l is :

$$
a=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}
$$

- The slope tells us the change of $f(x)$ when x increases by one unit \Rightarrow rate of change
- Example : $Q_{d}(P)=-0,15 P+0,14$ represents the demand function for chocolate, with P in euro and Q in kg.

How to measure the rate of change when the function is not linear?

What is the slope at $x=x_{0}$?

This is the most important slide of your life

definition

Let $\left(x_{0}, f\left(x_{0}\right)\right)$ be a point on the graph of $y=f(x)$. The derivative of f at x_{0} is the slope of the tangent line to the graph of f at $\left(x_{0}, f\left(x_{0}\right)\right)$. We write :

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

Simple rules for differentiation

- If $f(x)=a$, then $f^{\prime}(x)=0$

Simple rules for differentiation

- If $f(x)=a$, then $f^{\prime}(x)=0$
- Multiplicative constant are preserved by differentiation :

If $f(x)=a \times g(x)$, then $f^{\prime}(x)=a \times g^{\prime}(x)$ (with a a constant)

Simple rules for differentiation

- If $f(x)=a$, then $f^{\prime}(x)=0$
- Multiplicative constant are preserved by differentiation :

If $f(x)=a \times g(x)$, then $f^{\prime}(x)=a \times g^{\prime}(x)$ (with a a constant)

- Power rule :

$$
\text { If } f(x)=x^{a} \text {, then } f^{\prime}(x)=a x^{a-1}
$$

Differentiation of sums and differences

Consider the two differentiable functions $u(x)$ and $v(x)$

- If $f=u+v$, then $f^{\prime}=u^{\prime}+v^{\prime}$
- If $f=u-v$, then $f^{\prime}=u^{\prime}-v^{\prime}$
- Next week : introduction to optimization

Thank you for your attention!

nicolas.gavoille@sseriga.edu

