SSE Riga - Maths Foundation

Nicolas Gavoille

February 5, 2022

1/21

1/21

February 5, 2022

Nicolas Gavoille

Math Foundation

- 3 sessions :
 - February 5
 - February 12
 - February 19
- Starts at 10 :00
- Lecture + seminar
- Lecture slides + problem sets + solutions available online
- Certificate of attendance for students attending **all** three lectures

- Session 1 : Introduction to differentiation
- Session 2 : Introduction to optimimization
- Session 3 : Introduction to integral calculus

Introduction to differentiation

Definition

A function f is a rule that assigns to each number x in a set a number f(x). The set of all allowable values of x is called the domain, and the set of all values f(x) for x in the domain is called the range

Definition

A function f is a rule that assigns to each number x in a set a number f(x). The set of all allowable values of x is called the domain, and the set of all values f(x) for x in the domain is called the range

In economics :

- $Q_D(P)$: demand function
- U(x) : utility function
- $\Pi(Q)$: profit function

• ...

How quickly does f(x) change when x slightly increases?

How quickly does f(x) change when x slightly increases? What is the **rate of change**?

• General form : f(x) = ax + b, with a and b constants

- General form : f(x) = ax + b, with a and b constants
- *a* is the **slope** of the graph of the function, *b* is the **intercept**

- General form : f(x) = ax + b, with a and b constants
- a is the **slope** of the graph of the function, b is the **intercept**
- Let (x_0, y_0) and (x_1, y_1) be arbitrary points on a line l. The slope of the straight line l is :

$$a = \frac{y_1 - y_0}{x_1 - x_0}$$

- General form : f(x) = ax + b, with a and b constants
- a is the **slope** of the graph of the function, b is the **intercept**
- Let (x_0, y_0) and (x_1, y_1) be arbitrary points on a line l. The slope of the straight line l is :

$$a = \frac{y_1 - y_0}{x_1 - x_0}$$

The slope tells us the change of *f*(*x*) when *x* increases by one unit ⇒ rate of change

February 5, 2022

- General form : f(x) = ax + b, with a and b constants
- a is the **slope** of the graph of the function, b is the **intercept**
- Let (x_0, y_0) and (x_1, y_1) be arbitrary points on a line l. The slope of the straight line l is :

$$a = \frac{y_1 - y_0}{x_1 - x_0}$$

- The slope tells us the change of *f*(*x*) when *x* increases by one unit ⇒ rate of change
- Example : $Q_d(P) = -0, 15P + 0, 14$ represents the demand function for chocolate, with P in euro and Q in kg.

How to measure the rate of change when the function is not linear?

February 5, 2022 10 / 21

Nicolas Gavoille

February 5, 2022 11/21

February 5, 2022 12/21

Nicolas Gavoille

February 5, 2022 13 / 21

Nicolas Gavoille

February 5, 2022 14 / 21

definition

Let $(x_0, f(x_0))$ be a point on the graph of y = f(x). The **derivative** of f at x_0 is the slope of the tangent line to the graph of f at $(x_0, f(x_0))$. We write :

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

 $\frac{15/21}{15/21}$

February 5, 2022

Simple rules for differentiation

• If
$$f(x) = a$$
, then $f'(x) = 0$

Simple rules for differentiation

- If f(x) = a, then f'(x) = 0
- Multiplicative constant are preserved by differentiation : If $f(x) = a \times g(x)$, then $f'(x) = a \times g'(x)$ (with a a constant)

Simple rules for differentiation

- If f(x) = a, then f'(x) = 0
- Multiplicative constant are preserved by differentiation : If $f(x) = a \times g(x)$, then $f'(x) = a \times g'(x)$ (with a a constant)
- Power rule :

If
$$f(x) = x^a$$
, then $f'(x) = ax^{a-1}$

Consider the two differentiable functions u(x) and v(x)

• If
$$f = u + v$$
, then $f' = u' + v'$

• If
$$f = u - v$$
, then $f' = u' - v'$

• Next week : introduction to optimization

\mathbf{Nico}	las	Gavoi	11	le

Thank you for your attention!

nicolas.gavoille@sseriga.edu